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The paper investigates the phenomena occurring in a Taylor–Couette flow system
subject to a steady axial pressure gradient in a small envelope of the Taylor–
Reynolds state space under transitional regimes. A remarkable net power reduction
necessary to simultaneously drive the two flows compared to that required to
drive the Taylor–Couette flow alone is documented under non-trivial conditions.
The energy transfer process characterizing the large-scale coherent structures is
investigated by processing a set of statistically independent realizations obtained
from direct numerical simulation. The analysis is conducted with an incompressible
three-dimensional Navier–Stokes flow solver employing a spectral representation of
the unknowns.

1. Introduction
The Taylor–Couette flow in an annulus with a fixed outer cylinder and a pressure-

driven axial flow has several important engineering applications, such as those
occurring in chemical engineering processes, oil well drilling technology, biological
flows and turbomachinery, to name a few. Most of the available literature is focused
on the stability analysis of the combined flow at critical and supercritical regimes,
providing information on the characteristics of the toroidal vortices appearing in the
gap. Pioneering works on the linear stability analysis for axisymmetric disturbances
in a narrow annular gap are due to Chandrasekhar (1960, 1962) and di Prima (1960)
and were later extended to wide annular gaps (Chung & Astill 1977; di Prima &
Pridor 1979; Takeuchi & Jankowski 1981; Ng & Turner 1982). More recently
nonlinear dynamics of spiral Poiseuille problem for moderate axial through flow
has been investigated by numerically solving the unsteady Navier–Stokes equations
(Hoffmann, Lucke & Pinter 2004; Avila, Meseguer & Marques 2006; Heise et al.
2008).

The above theoretical analysis, together with several experimental investigations
(Snyder 1962; Schwarz, Springett & Donnelly 1964; Takeuchi & Jankowski 1981;
Ng & Turner 1982; Tsameret & Steinberg 1994), have shown the stabilizing effect
of the axial flow towards the Couette regime, so that the critical Taylor number
(Tac) is increased. Secondary transitions were already documented at the beginning
of the 1960s by Kaye & Elgar (1958) and Becker & Kaye (1962). A few fundamental
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studies concerning the identification of the flow regimes in an annulus with an axial
flow and a rotating inner cylinder have been carried out by Lueptow, Docter & Min
(1992). Seven flow regimes have been identified in the Taylor–Reynolds numbers
(Ta–Re) plane for a wide range of Taylor numbers and moderate axial Reynolds
numbers. Wereley & Lueptow (1999) used two-dimensional time-resolved velocity
measurements to investigate the axial translation of the inter-gap vortices and
furnished details of the fluid transport between them. The numerical study of
Hwang & Yang (2004) supported the experiments of Wereley & Lueptow (1999) and
provided additional details about the vortex dynamics. Experimental and numerical
studies of the combined flow at high Reynolds numbers for wide gap geometries,
providing mean velocity and Reynolds stress radial distributions, can be found in
Nouri & Whitelaw (1994), Escudier & Gouldson (1995), Chung & Sung (2005) and
Jung & Sung (2006). More applied investigations are due to Kataoka, Doi & Komai
(1977) who investigated the effects of periodically varying rates of heat transfer in
Taylor vortex flow with an axial flow rate in a wide gap geometry. They showed that
as the axial flow is gradually increased, not only is the regular sinusoidal variation
of the heat transfer coefficient distorted, but also its mean value and amplitude are
greatly reduced. A map in the Taylor–Reynolds numbers plane is also provided,
showing the occurrence of small secondary vortices attributed to the separation of
the boundary layer from the outer cylinder wall.

While the wide gap geometry has been extensively investigated, both numerically
and experimentally, the narrow one, also enjoying numerous engineering applications,
is less studied. A noteworthy exception is provided by the experimental work of
Yamada (1962a ,b). In Yamada (1962a) the resistance through coaxial cylinders with
a rotating inner one, has been studied for six gap sizes and various combinations
of axial and rotational flows. The friction coefficient was shown to be unaffected up
to a certain rotation speed when the axial flow is laminar, while beyond this speed
the resistance increases. Furthermore the critical Taylor number was shown to be
a non-monotonic function of the axial Reynolds number characterized by a neat
maximum. Similar experiments aimed at the determination of the effects of the axial
pressure gradient on the torque are reported in Yamada (1962b), with and without
circumferential grooves on the inner cylinder surface. When grooves and axial flow
are absent, the torque coefficient was shown to increase with the clearance, up to some
value of the angular speed. The axial flow increases the critical Taylor number up to
a certain value (Re ∼ 700) beyond which it decreases. For a fixed Reynolds number
and Ta < Tac, the torque coefficient scales like Ta−1, while for Ta >Tac it increases,
reaching a maximum before starting to decrease again, eventually attaining a Ta−1/4

slope. At constant Taylor number (103 � Ta � 104), the torque coefficient decreases
with Reynolds number reaching a minimum, in some instances equal to the Couette
value, before increasing again. In the first stage of this process the torque coefficient
reduction may be accompanied by a complete suppression of the vortical structures
in the clearance, through a nonlinear process. It is precisely the dynamics of the
vortex suppression phenomena which has been focused on in the present paper. Field
data, obtained from the numerical solution of the three-dimensional Navier–Stokes
equations with a high accurate method, have been used to investigate the energy
transfer process of the large-scale structures during the relaminarization.

The paper is organized as follows. The problem formulation detailing the run
matrix in the plane of dimensionless governing parameters is reported in § 2, while a
short introduction of the mathematical model and the numerical procedure are given
in § 3. Details concerning the computational domain along with a grid convergence
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study can be found in the Appendix. Finally, results in terms of global and local
parameters are provided in § 4. Conclusions are given in § 5.

2. Problem formulation
The problem under investigation is the flow in an annular duct consisting of two

concentric cylinders out of which the inner one rotates at constant angular velocity
while the outer one is stationary. The duct is subject to a uniform steady pressure
gradient generating an axial flow, which, under specific regimes, interacts to some
remarkable extent with the base flow.

The geometry is completely defined by the inner radius Ri and the outer radius
Ro = Ri + S, with S the gap width, and the duct length Lz or, equivalently, by the
ratio of the inner radius to the outer radius, η = Ri/Ro, and the dimensionless axial
length �z =Lz/S.

The combined motion is governed by two dimensionless parameters, the Taylor and
Reynolds numbers, defined as Ta = ΩRiS/ν and Re =UbS/ν, with Ω , Ub and ν the
angular velocity, the axial bulk velocity and the kinematic viscosity, respectively. For
Re =0 and Ta smaller than a critical value Tac, a closed expression for the velocity
distribution exists:

U = V = 0, W (R) = ΩRi

η

1 − η2

[
Ro

R
− R

Ro

]
, (2.1)

U , V and W being the axial, radial and azimuthal velocity components.
When Ta exceeds Tac the flow becomes linearly unstable to axisymmetric three-

dimensional toroidal vortices, which are usually parameterized by expanding in
truncated Fourier series the velocity vector field (Davey 1965). Therefore it is
customary to represent them in terms of axial and azimuthal wavenumber pairs.
In the narrow gap limit (η → 1) the critical value can be estimated by eigenvalue
analysis (Chandrasekhar 1961) as

Tac = 41.41(1 − η)−1/2. (2.2)

With further increase in the Taylor number the flow becomes again unstable beyond
a second critical value (Ta ∼ 1.1 Tac) (di Prima 1961; Coles 1965; Schroeder &
Keller 1990), the instability resulting in a wavy vortex flow pattern with azimuthally
propagating waves superposed on the Taylor vortices (Marcus 1984). These states
characterized by different axial and azimuthal wavenumbers are not a unique function
of the Taylor number, since it has been experimentally demonstrated that different
equilibrium states coexist on each stable bifurcation branch (Coles 1965; Moulic &
Yao 1996). With further increase in the Taylor number beyond Ta ∼ 10 Tac new
regimes have been experimentally observed, namely modulated wavy vortex with a
quasi-periodic feature (up to Ta ∼ 12 Tac), turbulent modulated wavy vortex (up
to Ta ∼ 19 Tac), turbulent wavy vortex (up to Ta ∼ 22 Tac) and turbulent vortex
(Fenstermacher, Swinney & Gollub 1979; Andereck, Liu & Swinney 1986; Lueptow,
Docter & Min 1992). Those flow topologies represent a sequence of transitional
states towards turbulent regimes by spectral evolution; that is to say transition is
viewed as a cascade process in which energy is transferred by nonlinear interaction
through a discrete spectrum to progressively higher frequencies in a two-dimensional
wavenumber space. When the Taylor number approaches values of order 5−10 × 104

the discrete spectrum changes gradually to a continuous one by broadening of the
initially sharp energy peaks (Coles 1965).
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Superposing an axial flow changes the stability scenario, as demonstrated by
both experimental (Kaye & Elgar 1958; Snyder 1962) and theoretical investigations
(Chandrasekhar 1961; Chung & Astill 1977; Hasoon & Martin 1977; di Prima &
Pridor 1979). More specifically, the axial flow in the annulus enlarges the stability
region of the circular Couette flow, increasing the critical Taylor number as the
Reynolds number of the axial flow is increased. Within the above region of the state
space (Ta, Re), termed spiral Poiseuille flow (SPF; Joseph 1976), the azimuthal and
axial velocity components are independent functions of the radial coordinate for given
η:

U (R) = 2Ub

(1 − (R/Ro)
2) log η − log (R/Ro)(1 − η2)

(1 + η2) log η + (1 − η2)
,

V (R) = 0,

W (R) = ΩRi

η

1 − η2

[
Ro

R
− R

Ro

]
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.3)

The linear stability of the SPF has been the subject of several theoretical studies
(Chandrasekhar 1960; di Prima 1960; Datta 1965; Hughes & Reid 1968; Elliott
1973), all of which relied on various approximations. More recently Recktenwald,
Lucke & Muller (1993) computed the first instability, providing the coefficients of the
complex Ginzburg–Landau equation for a wide range of radius ratio as a function of
the through-flow strength for small Reynolds numbers. Their results have been fitted
for each η and Re by a power law expansion well representing the numerical data in
the the range 0 � Re � 20 as

TaSPF
c =

√√√√ η

1 − η
a0 +

[
1 +

(
Re

a2

)2

+

(
Re

a4

)4
]
. (2.4)

For η = 0.975, the closest available η value, the coefficients appearing in (2.4) are
a0 = 1746, a2 = 35.97, a4 = 65.34 (Recktenwald et al. 1993).

Outside the instability limit TaSPF
c , a rich variety of flow regimes can be found,

each of which are characterized by boundaries whose shape can only be ascertained
via carefully designed experimental tests. The occurrence of these regimes has been
visually and optically studied detecting the transition over a wide range of Taylor
numbers for moderate Reynolds numbers (η = 0.848, Ta � 3000 and Re � 40) by
Lueptow et al. (1992). From our point of view, the fundamental analysis of the flow
regimes in the (T a, Re) space could prove very useful to explain certain phenomena
of engineering relevance occurring in devices whose flow features are similar to
those described in Lueptow et al. (1992). Yamada (1962a ,b) experimentally addressed
the resistance and torque behaviour of a water flow through coaxial cylinders
characterized by narrow gap geometries (η > 0.897), for a wide range of Ta and
Re. No topological information about the characterization of the flow regimes was
provided. In his landmark contribution, among many interesting achievements, it
was found that for a fixed Taylor number, the torque decreases as the axial flow is
gradually increased, reaching a nearly constant value, while the axial pressure drop
increases too. Such a behaviour is observed in a range of axial flows (i.e Reynolds
numbers), beyond which both torque and axial resistance increase again. In this study
we focused on specific regimes which, according to the experimental data of Yamada
(1962a), exhibit a peculiar behaviour of the axial resistance and torque, analysing
an annular duct characterized by η = 0.98. Two different Taylor numbers have been
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DNS data Experimental data

Re \ Ta 1000 1500 1000 1500

0 X X X X
50 X X X X

100 X X / X
200 X X X X
400 X X X X

Table 1. Run matrix detailing Taylor and Reynolds number pairs presently investigated;
DNS, direct numerical simulation.

considered, namely Ta = 1000 and Ta =1500, for each of which a moderate axial
pressure gradient has been superposed. The resulting Reynolds number, ranging from
0 to 400, is summarized in table 1.

Since the work of Lueptow et al. (1992) several flow regimes have been
experimentally observed as the Taylor number is increased, depending on the axial
flow rate. Typically the experimental studies are based on the spectral analysis of the
time-dependent properties of the reflected light produced by a laser beam illuminating
a small region of the outer portion of the annulus. Unfortunately no such data are
available for the geometry (η = 0.98) and all state parameters presently investigated
(see table 1), so that we can only rely on the computed data. Let us observe that if their
results (η = 0.848) were applicable to the present case (η =0.98), then only 2 out of 10
regimes could be defined, the Ta =1000 and Re = 0 modulated wavy vortices (MWV)
and the Ta = 1500 and Re = 0 turbulent wavy vortices (TWV). From the shape of
the boundaries at Re = 40 given in figure 3 of Lueptow, Docter & Min (1992), the
Ta = 1500, Re = 50 case could be classified as TWV with some uncertainty. To orient
the reader, we present in figure 1 a schematic diagram showing in the Ta–Re plane
approximate boundaries useful for the characterization of the computed regimes. The
solid line defines the region in which SPF conditions were experimentally observed
by Yamada (1962a ,b), while the dashed line represents the stability limit (2.4) slightly
extended outside its fitting range (0 � Re � 20).

To give an idea of the complexity of the problem under investigation, we show in
figure 2, through a few instantaneous realizations, the effects of the mean flow rate on
the crossflow vector field, in the Ta = 1500 case. The plot, presented in dimensionless
coordinates (y = (R − Ri)/S and z = Z/S), highlights the multiple-scale features of
the energy-producing events as opposed to the few, large-sized, regular structures
characterizing laminar helical vortex and helical wavy vortex regimes which occur
at much smaller Ta , as shown in Wereley & Lueptow (1999). Thus at the current
Taylor numbers the vortices appear turbulent, in agreement with the experiments
of Lueptow et al. (1992) carried out at comparable Ta and slightly smaller η

and Re.
Without entering into the details of the definition of the boundaries separating one

regime from the other in a topological sense, it turns out that the volume-averaged
turbulent shear stress is always comparable in magnitude with the viscous one, as
detailed in § 4. Thus there is a significant scale separation requiring an appropriate
spatial and temporal resolution.



378 M. Manna and A. Vacca

0 500 1000 1500 2000

Ta

250

500

750

1000

SPF

TWV
MWV

Figure 1. Schematic diagram in the Ta–Re plane, showing approximate boundaries between
different flow regimes: dashed line, (2.4); �, experimental data in the SPF regime of Yamada
(1962a ,b); solid line, polynomial best fit of �; �, computed data as defined in table 1.
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Figure 2. Instantaneous velocity vector fields (Ta = 1500) in the cross-plane: (a) Re =0; (b)
Re = 50; (c) Re = 100; (d ) Re = 200.

3. Numerical method and computational set-up
The governing equations are the incompressible Navier–Stokes equations in their

primitive variable dimensionless form:

∂u
∂t

= −∇p − Nu +
1

T a
Lu + Su (3.1)
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and

∇ ◦ u = 0, (3.2)

where u = (u, v, w)t , with u, v and w the dimensionless axial, radial and azimuthal
velocity components, and p is the dimensionless pressure. Clearly the characteristic
length and velocity scales are assumed to be the gap width Ro − Ri and velocity of
the inner cylinder ΩRi , respectively. The source term S is introduced to deal with
a specific class of problems, namely flows in equilibrium in the axial direction. It
therefore represents the effect of a steady pressure gradient, applied to induce an axial
flow with prescribed Reynolds number Re:

Su =

(
λ

4

Re2

T a2
, 0, 0

)t

, (3.3)

with λ a coefficient whose value is a unique unknown function of the Reynolds number.
Owing to the nonlinear dependence of λ on the Reynolds number it is impossible
to specify a priori the λ value corresponding to a well-defined Re. Therefore in the
present study λ is iteratively computed at each time step from the axial momentum
equilibrium condition, in integral form.

Equations (3.1) and (3.2) are subject to the boundary conditions u = (0, 0, 1)t and
u = (0, 0, 0)t at the inner and outer radii, respectively.

The differential operators of (3.1) and (3.2) in cylindrical coordinates are given by

∇u =

(
∂u

∂z
,

∂u

∂r
,

1

r

∂u

∂θ

)t

,

Nu = ∇u · u =
(

∇u · u, ∇v · u − wnθ

r
, ∇w · u +

vnθ

r

)t

,

∇ ◦ u =
∂u

∂z
+

1

r

∂rv

∂r
+

1

r

∂w

∂θ
,

�u =
∂2u

∂z2
+

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
,

Lu = �u =

(
�u, �v − v

r2
− 2

r2

∂w

∂θ
, �w +

2

r2

∂v

∂θ
− w

r2

)t

,

∇ × u =

(
1

r

∂rw

∂r
− 1

r

∂v

∂θ
,

1

r

∂u

∂θ
− ∂w

∂z
,

∂v

∂z
− ∂u

∂r

)t

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

Following the standard pressure correction approach we integrate the governing
equations, decoupling the velocity and the pressure at each time step (van Kan
1986). To overcome the time step limitations of the diffusive operator we implicitly
discretize the viscous terms (Crank–Nicolson); the convective operator, written in
skew-symmetric form, and the source term are instead treated explicitly for simplicity
(Adams–Bashforth). Let un be the approximation to u(·, n�t) at time level n�t and
v the intermediate velocity vector field of the time-splitting method whose curl ∇ × v

approximates ∇ × u up to O(�t2). With these assumptions the semi-discrete form of
(3.1) and (3.2) reads

v − un

�t
− 1

2Re
�(v + un) = −∇pn − 3

2
(Nun − Sun) +

1

2
(Nun−1 − Sun−1), (3.5)

un+1 − v

�t
= −1

2
∇(pn+1 − pn), (3.6)

∇ ◦ un+1 = 0. (3.7)
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The above formulation introduces a vortex sheet of strength O(�t2) at the boundaries
which vanishes in the steady state.

Equations (3.5) constitute a set of coupled Helmholtz equations for the predicted
velocity components; a scalar Poisson equation for the pressure follows from (3.6)
and (3.7). Referring to the former set, for the sake of clarity, let us rewrite (3.5), as
follows:

αv − Lv = f , (3.8)

where α =2T a/�t and f includes all known terms involved in (3.5). Unlike the
Cartesian case, where the implicit treatment of the diffusion (together with the explicit
treatment of the convection) still allows to uncouple the momentum equations, in
cylindrical coordinates the radial and azimuthal momentum equations are strongly
coupled, as it can be easily verified by inspection of (3.4). As described in Manna &
Vacca (1999), the flow is assumed to be homogeneous in the azimuthal direction θ ,
and thus the computational efficiency of the fast Fourier Transform could be enjoyed
by expanding in Fourier series all variables. The velocity field and the pressure can
then be represented in the transformed space by Mθ complex coefficients vm and pm

as follows:

v(z, r, θ, t) =

Mθ /2−1∑
m=−Mθ /2

vm(z, r, t)eimθ ∀θ ∈ [0, 2π], (3.9)

p(z, r, θ, t) =

Mθ /2−1∑
m=−Mθ /2

pm(z, r, t)eimθ ∀θ ∈ [0, 2π]. (3.10)

Introducing (3.9) in (3.8) and following the Galerkin projection method yields

αvm − L̂vm = f m, (3.11)

with

L̂vm =

(
�rzum − m2

r2
um, �rzvm − m2 + 1

r2
vm

− 2

r2
i m wm, �rzwm − m2 + 1

r2
wm +

2

r2
i m vm

)t

,

�rz· =
∂2·
∂z2

+
1

r

∂

∂r

(
r

∂·
∂r

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.12)

An analogous procedure is applied to the pressure Poisson equation.
This representation provides the possibility of decoupling the diffusive terms, and

thus a diagonalization of (3.12) can be obtained according to the following change of
variables (Orzag & Patera 1983):

ṽm = (ũ, ṽ, w̃)t ≡ (um, vm + iwm, vm − iwm)t . (3.13)

Equation (3.11) then reduces to

αṽm − L̃ṽm = f̃ m, (3.14)

where the scalar components of f̃ m obey analogous transformation as (3.13), and

L̃ṽm =

(
�rzũ − m2ũ, �rzṽ − (m + 1)2

r2
ṽ, �rzw̃ − (m − 1)2

r2
w̃

)t

. (3.15)
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Irrespective of the functional representation of the unknowns in the z and r directions
the above decomposition reduces, in a quite general form, the original set of
partial differential equations (3.5) to a cascade of two-dimensional uncoupled elliptic
problems, which do not differ from their Cartesian counterpart except for the explicit
r dependence of the differential operators. Additional computational efficiency can
be gained assuming periodicity in the axial direction and expanding all variables in
truncated Fourier series, reducing the original set of equations to a double cascade of
one-dimensional uncoupled elliptic problems. Finally, in the inhomogeneous (radial)
direction r a Chebyshev polynomial expansion is adopted and a multi-domain
patching collocation method applied to efficiently solve the resulting equations.
Using a linearity argument the elliptic problem is decomposed in a set of decoupled
inhomogeneous problems within each subdomain. The continuity of the solution
and its normal derivative along the interfaces is enforced seeking the appropriate
harmonic extension. While the inhomogeneous problems are solved with standard
Chebyshev collocation algorithm, the homogeneous one is tackled expanding the
unknown solution in terms of Bessel functions of first and second kinds (Manna &
Vacca 1999).

We recall that since the velocity and pressure are decoupled from each other, the
space discretization for velocity and pressure can be chosen independently, and they
do not need to satisfy the Babuska–Brezzi condition (Shen 1996). Thus we have used
equal-order trigonometric and Chebyshev polynomials for both velocity and pressure.
The pressure Poisson equation is solved with homogeneous Neumann boundary
conditions on pn − pn−1. Convergence properties of the Navier–Stokes kernel with
exponential rate of the error decay can be found in Manna & Vacca (1999).

For practical reasons, the Taylor–Couette flow problem described in § 2 is more
efficiently represented on a computational domain of finite size, defined in terms of
four characteristic length scales, namely Lz, Lθ , Ri, Ro. While the inner and outer
radii suffice to characterize the annular geometry in the radial direction, the axial
extension has to be defined so that Lz/S is much larger than one. In practice this is
difficult in both experimental and numerical studies because perturbations affecting
to some extent the fundamental flow features are unfortunately unavoidable. While
in experimental set-ups the presence of endwalls induces side effects that have been
shown to have an impact on the cell pattern generation (Coles 1965), in numerical
studies axial periodicity can be exactly imposed so that the only induced errors pertain
to the physical size (axial extension) of the computational domain. With a finite axial
length Lz, the most important issue to address concerns the number of coherent large
-scale structures that can be properly accommodated within Lz and their impact on
the collected statistical data. On the other hand, the azimuthal length Lθ , referred
to the mean radius, can be exactly specified equal to Lθ = π(1 + η)/(1 − η)S. On a
finite-sized computational domain a smaller value can be adopted with a criterion
similar to the one considered to define the axial length Lz. Details concerning the
definition of the computational domain size, along with a grid convergence study, are
provided in the Appendix.

Unless otherwise stated all computations have been performed with dimensionless
axial and azimuthal lengths equal to �z = 4 and �θ = π/9(1 + η)/(1 − η). Likewise,
the computational domain has been discretized with four subdomains, each of
which have 64, 14 and 256 modes in the axial, radial and azimuthal directions,
respectively. The radial distribution of subdomain widths in the radial direction
has been devised to enhance the wall-layer resolution; the four subdomains’ radial
width distribution is as follows: 1/6, 1/3, 1/3, 1/6. The time step is set equal to
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2.5 × 10−2 and 1.25 × 10−2 dimensionless units, for the Ta =1000 and Ta = 1500
cases, respectively. Each simulation is started, destabilizing the velocity distribution
given in (2.3) with a small-sized perturbation imposed on the velocity vector field
in the Fourier-transformed space. The dimensionless amplitude of the perturbation
applied to the first three modes, in both the axial and azimuthal directions, is typically
set to 0.05.

4. Results
The dimensionless torque exerted on the inner cylinder is defined in terms of the

following coefficient:

Cτ = τ rθ,i, (4.1)

in which τ rθ,i is the dimensionless azimuthal component of the shear stress,

τ rθ = − 1

T a

(
dw

dr
− w

r

)
, (4.2)

at the inner wall. In what follows we shall denote with an overbar the time- and space-
averaged quantities over the two homogeneous directions z and θ and with a prime
the perturbations from the averaged quantities. Numerical data have been computed,
collecting statistics over a time span typically of order 3 × 103 dimensionless time
units. With an eddy turnover time of order 70 units, the sample size has been fixed
to 50 independent realizations, having discarded the initial transient.

We begin the analysis giving in table 2 the computed values of torque coefficient
Cτ for the values of Ta and Re reported in table 1, together with the experimental
data of Yamada (1962b). The agreement is good, within a 5–10 % difference margin.

The same table presents the torque coefficients Cτ divided by the corresponding
circular Couette values, computed by means of the equation

Cτc =
1

Ta

1

η(1 + η)
, (4.3)

obtained by replacing (2.1) in (4.1) and (4.2). For ease of reading the torque coefficient
computed in absence of any axial pressure gradient is termed Cτ0.

With reference to the Cτ/Cτc columns of table 2 we note that while for Ta = 1000
the SPF regime is recovered already for Re = 100, for the Ta = 1500 case this reverse
transition process takes place at Re > 200. The Cτ/Cτ0 data demonstrate the gradual
reduction of the torque coefficient with Re as consequence of the axial pressure
gradient. This gradual process indicates that large-scale coherent structures persist in
the annular gap before being killed by the axial flow. This destruction phenomenon
occurs through a multiple-scale interaction, as suggested by the velocity component
spectra and correlations, reported later on.

Again table 2 shows the values of the resistance coefficients λ defined as

λ = 4
�p

�z

T a2

Re2
, (4.4)

in which �p/�z is the mean pressure gradient,

�p

�z

= 2
τ rz,o − τ rz,iη

1 + η
, (4.5)
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Ta = 1000 Ta = 1500

Cτ × 103 Cτ/Cτc Cτ /Cτ0 λ λ/λp Cτ × 103 Cτ/Cτc Cτ /Cτ0 λ λ/λp

Re DNS Experiment � (%) DNS DNS DNS DNS DNS Experiment � (%) DNS DNS DNS DNS

0 2.38 2.45 −2.82 2.31 1.00 – – 2.03 2.02 0.69 2.96 1.00 – –
50 2.08 2.21 −5.93 2.02 0.87 0.99 1.04 1.99 1.98 0.64 2.90 0.98 1.03 1.07

100 1.03 – – 1.00 0.43 0.48 1.00 1.90 1.95 −2.39 2.77 0.94 0.55 1.14
200 1.03 1.03 0.07 1.00 0.43 0.24 1.00 1.72 1.53 12.73 2.51 0.85 0.28 1.15
400 1.03 1.03 0.07 1.00 0.43 0.12 1.00 0.69 0.70 −1.84 1.00 0.36 0.12 1.00

Table 2. Global parameters.
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Figure 3. Resistance coefficient: Solid line, (4.7); Dashed line, λ= 0.26Re−1/4; �, Ta = 1000;
�, Ta = 1500.

with τ rz,i and τ rz,o the averaged axial components of the shear stress,

τ rz = − 1

T a

du

dr
, (4.6)

at the inner and outer walls, respectively.
In laminar SPF, the axial velocity u(r) is a unique function of the radial coordinate

for given η (see (2.3)), so that replacing (2.3) in (4.6) yields the laminar value

λp =
32

Re

[
(1 − η)2

1 + η2 + 1 − η2

log η

]
. (4.7)

For Ta = 1000 the axial flow does not affect the axial resistance as demonstrated
by the λ/λp ratios which remain close to one for all cases. Conversely at Ta = 1500,
the axial flow rate first induces a moderate λ/λp rise which vanishes at Re = 400,
thus proving that in the Re =50–200 range, the vortical structures do affect the axial
shear stress up to the point at which the reverse transition process occurs; i.e. the
laminar SPF regime is recovered at 200 � Re � 400. Therefore the Re−1 dependence
of λ is altered in a small range of Reynolds number, to return to the −1 slope (see
figure 3) and to remain so until the laminar to turbulent transition value is achieved,
at Re ∼ 103 (Yamada 1962a).

From the equilibrium conditions we can easily work out the input power necessary
to keep the inner cylinder rotating and to ensure the prescribed flow rate. As concerns
the Taylor–Couette problem, the above-mentioned power input, in dimensionless
form, is equal to

Pθ = 2πCτ

η

1 − η
�z, (4.8)
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Ta = 1000 Ta = 1500

Re Pθ Pz Ptot � Pθ Pz Ptot �

0 2.99 0.00 2.99 0% 2.55 0.00 2.55 0%
50 2.61 0.04 2.65 −11.4 % 2.50 0.01 2.51 −1.6%

100 1.29 0.15 1.45 −51.6 % 2.39 0.05 2.44 −4.4%
200 1.29 0.61 1.90 −36.3 % 2.17 0.21 2.37 −7.1%
400 1.29 2.44 3.73 24.7% 0.91 0.72 1.64 −35.9%

Table 3. Input power.
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Figure 4. Power input: �, Pθ ; �, Pz; �, Ptot . (a) Ta = 1000; (b) Ta = 1500.

and for the axial flow

Pz =
π

4
λ
Re3

T a3

1 + η

1 − η
�z. (4.9)

Table 3 and figure 4 give the power split between the azimuthal and axial components
along with the overall power Ptot = Pθ +Pz and the percentage variation �= (Ptot −
Pθ,0)/Pθ,0, with Pθ,0 the value of Pθ obtained for Re =0.

While the power required to drive the axial flow is a monotonically increasing
function of the Reynolds number, the azimuthal counterpart decreases before reaching
the constant value 1.29 at Re = 100 for Ta = 1000. The latter represents the Couette
value, which can be readily evaluated replacing (4.3) in (4.8). The sum of two
contributions reduces up to Re = 100 and increases further on. At Re =50 the
azimuthal power is nearly twice as much as the steady Couette value (2.61 versus
1.29), and still there is 11 % power reduction, with respect to the power required
to drive the azimuthal flow alone, in absence of any axial pressure gradient. The
largest power reduction (51.6 %) is attained at Re = 100 when the axial flow rate
leads to a complete suppression of any crossflow vortical structure under the SPF
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Figure 5. Mean azimuthal velocity profiles in outer coordinates at Ta = 1000: solid line,
Couette; dotted line, Re = 0; dashed line, Re = 50; �, Re = 100.

regime. Therefore on practical ground it may be inferred that a remarkable torque
reduction may be achieved simply superposing a small axial flow rate as to match
this optimal Re–T a pair. Any further increase in the axial flow would lead an overall
power increase.

In the Ta =1500 case, the azimuthal contribution is a monotonically decreasing
function of Re in the entire range explored. The overall power reduces by 7 % for
Re = 200, before reaching the SPF value, at Re = 400, with an overall power reduction
of 36 %. As before, since the SPF condition has been reached, this Ta–Re pair should
be considered as the optimal one.

Let us observe that an energy saving in a global sense is achieved only when
the power required to drive the combined motion is smaller than the sum of the
powers required to drive separately the Taylor–Couette and the axial flows. Thus, the
present results provide a precise indication of the state space within which engineering
application concerning torque-transferring devices are worthwhile.

In figures 5 and 6 we plot the mean dimensionless azimuthal velocity component
w as a function of the dimensionless distance from the inner wall y, together with the
Couette distribution, for both Taylor numbers. The effects of increasing the Reynolds
number are demonstrated through the slope reduction of the velocity profiles at the
walls, until the Couette distribution is achieved, and the Cτc value is recovered. The
experiments of Yamada (1962b) indicate that a further increase in the Reynolds
number induces a corresponding increment of the torque coefficient which eventually
will exceed the Cτ0 value. This phenomenon is seen to occur when Ta ∼ Re, i.e. when
the two characteristic velocity scales ΩRi and Ub, are very close. (For instance for
Ta = 1500, the condition Cτ/Cτ0 = 1 occurs at Re ∼ 2000.)

Figures 7 and 8 show, in outer coordinates across the gap width, the dimensionless

turbulent kinetic energy profiles defined as κ = 0.5(u′2 + v′2 + w′2), for all (T a, Re)
pairs. For both Taylor numbers the axial flow rate is seen to induce a progressive



Torque reduction in Taylor–Couette flows 387

0 0.2 0.4 0.6 0.8 1.0
y

0.2

0.4

0.6

0.8

1.0

Figure 6. Mean azimuthal velocity profiles in outer coordinates at Ta = 1500: solid line,
Couette; dotted line, Re = 0; dashed line, Re =50; long-dashed line, Re =100; dot-dashed line,
Re = 200; �, Re = 400.

0 0.2 0.4 0.6 0.8 1.0
y

0.008

0.016

Figure 7. Turbulent kinetic energy profiles in outer coordinates at Ta = 1000: solid line,
Re = 0; dotted line, Re = 50.

reduction in the turbulent intensities accompanied by a flattening of the profiles in
the gap core as Re is increased.

We now turn to the time- and space-averaged azimuthal component of the
momentum equations (3.1), which reduces to

−[v′w′ + F (r)] + τ rθ (r) + G(r) = τ rθ,i, (4.10)
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Figure 8. Turbulent kinetic energy profiles in outer coordinates at Ta = 1500: solid line,
Re = 0; dotted line, Re =50; dashed line, Re = 100; long-dashed line, Re = 200.

with

F (r) = 2

∫ r

η/(1−η)

v′w′

r
dr, G(r) =

2

T a

(
w

r
− 1 − η

η

)
. (4.11)

In the above equations the F and G functions represent the convective and diffusive
terms arising from the cylindrical coordinate formulation, i.e. curvature effects. Note
that for r → ∞ (η → 1), both the F and G terms vanish and the plane case, with a
constant overall stress distribution, is recovered. Figures 9 and 10 show the turbulent
(sum of the first and second terms on the left-hand side of (4.10)) and the viscous
(sum of the third and fourth terms on the left-hand side of (4.10)) shear stresses,
divided by τ rθ,i, across the gap. In the core region, the increase in the axial Reynolds
number induces an appreciable reduction of the turbulent part accompanied by a
corresponding increase of the viscous one. In all cases the volume-averaged turbulent
shear stress is comparable in magnitude with the viscous one.

To have a deeper insight into the radial distribution of the dissipated power we
analyse the individual contributions:

Ptot = Pt + Pv, (4.12)

where Pt and Pv respectively denote the turbulent and viscous parts, given by

Pt = −2π�z

∫ 1/(1−η)

η/(1−η)

(
u′v′ du

dr
+ v′w′ dw

dr
− v′w′ w

r

)
rdr, (4.13)

Pv =
2π

T a
�z

∫ 1/(1−η)

η/(1−η)

((
r

d

dr

(
w

r

))2

+

(
du

dr

)2)
rdr. (4.14)

Equations (4.13) and (4.14) follow directly from the kinetic energy of the mean
flow integrated across the dimensionless volume V = π�z(1 + η)/(1 − η), with some
algebra, accounting for the homogeneity of the flow field in the axial and azimuthal
directions. Figures 11 and 12 present the radial distribution of the terms appearing
in integrals (4.13) and (4.14) normalized with the input power of the SPF flow, per
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Figure 9. Viscous and turbulent shear stress profiles in outer coordinates at Ta = 1000: solid
line, Re = 0; dotted line, Re = 50.
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Figure 10. Viscous and turbulent shear stress profiles in outer coordinates at Ta = 1500:
solid line, Re =0; dotted line, Re = 50; dashed line, Re =100; long-dashed line Re = 200.

unit volume. The viscous contributions, which are obviously largest in the wall layer,
drop below the turbulent value in the region 0.2 <y < 0.8 in the Ta =1000 case,
while for Ta =1500 this region is wider, i.e. 0.15 <y < 0.85. The effects of Reynolds
number essentially consist of fuller turbulent dissipation profiles attained through a
reduction of the wall-layer peaks and the simultaneous increase of the core values. In
the Ta = 1500 case, the viscous contribution is negligible in a region of the annular
gap representing 40 % of the gap itself.



390 M. Manna and A. Vacca

0.2 0.4 0.6 0.8 1.0
y

0

2.0

4.0

6.0

Viscous

Turbulent

Figure 11. Viscous and turbulent dissipation in outer coordinates at Ta = 1000: solid line,
Re = 0; dotted line, Re =50.

0.2 0.4 0.6 0.8 1.0
y

0

2.0

4.0

6.0

8.0

10.0

Viscous

Turbulent

Figure 12. Viscous and turbulent dissipation in outer coordinates at Ta = 1500: solid line,
Re = 0; dotted line, Re =50; dashed line, Re = 100; long-dashed line, Re = 200.

Figures 13–16 depict one-dimensional power spectra of all velocity components
in wavenumber space in both the azimuthal (kθ = 2πk/�θ ) and axial (kz = 2πk/�z)
directions, at y =0.11 for all (T a, Re) pairs. The spectra of the axial and azimuthal
velocities in the θ direction, given in figure 13, are characterized by an interesting
crossover point occurring at k�

θ ∼ 1.5. For kθ < k�
θ , i.e. at low frequencies, the axial

flow rate is observed to induce some energy reduction for both axial and azimuthal
fluctuating-velocity components, while the opposite is true for kθ > k�

θ . The radial
component instead undergoes an increase at all azimuthal wavenumbers. These results
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Figure 13. Velocity power spectra in θ direction at Ta = 1000: (a) z component, (b) θ
component, (c) r component; solid line, Re = 0; dotted line, Re = 50.
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Figure 14. Velocity power spectra in θ direction at Ta = 1500: (a) z component, (b) θ
component, (c) r component; solid line, Re = 0; dotted line, Re = 50; dashed line, Re = 100;
long-dashed line, Re =200.

are confirmed at other radial locations (results not shown herein). Because of the radial
inhomogeneity the spectra are r dependent, and therefore a local direct energy transfer
from the large scales to the small scales cannot be inferred by simple means. However,
small scales appear to have increased their energy content, a counter-intuitive
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Figure 15. Velocity power spectra in z direction at Ta = 1000: (a) z component, (b) θ
component, (c) r component; solid line, Re = 0; dotted line, Re =50.
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Figure 16. Velocity power spectra in z direction at Ta = 1500: (a) z component, (b) θ
component, (c) r component; solid line, Re =0; dotted line, Re = 50; dashed line, Re = 100;
long-dashed line, Re = 200.

event, in a global energy-decreasing context. Similar results obtained in other drag-
reducing flow problems have already been reported (see for instance Quadrio &
Sibilla 2000). At Ta = 1500 (see figure 14) the aforementioned crossover points and the
associated large-/small-scale modifications are seen to exist for all fluctuating-velocity
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Figure 17. Velocity spatial correlation in z direction in inner coordinates at Ta = 1000: (a) z
component, (b) r component, (c) θ component; solid line, Re = 0; dotted line, Re = 50.

components. The power spectra in the z direction, representing the counterparts of
figures 13 and 14, are given in figures 15 and 16. With the exception of the z

component at Ta = 1000, exhibiting a crossover point at k�
z ∼ 8, all distributions are

characterized by a uniform reduction at all wavenumbers when the axial pressure
gradient is imposed.

Comparing the spectra reported in figures 13 and 14 with the corresponding ones
of figures 15 and 16 we can infer that the torque reduction is associated with a
peculiar modification of the energy-containing structures, as the axial flow rate is
increased. The modification consists in a spectral energy gain (loss) in the small
(large) scales, in the azimuthal direction, while in the axial direction energy is just
lost. Therefore turbulent structures undergo remarkable changes of different nature
in z and θ directions, as a consequence of the axial mean shear. Eventually the
turbulent structures will not survive the axial mean shear, and reverse transition will
occur. Figures 17–20 present the two-point velocity correlations Ruu, Rvv , Rww in the
axial and azimuthal directions at y = 0.11 (y+ ∼ 5) with and without axial flow, in
inner coordinates. For both Taylor numbers the axial pressure gradient induces an
appreciable reduction in the axial direction of the characteristic length scale of the
coherent structures, defined by twice the separation distance at which the minimum
of Rww occurs. In the azimuthal direction the effects of Re consist in a reduction of
the zero point. Also the Taylor microscales, in z and θ directions, appear to have
reduced in size. To substantiate the above results we show in figures 21 and 22 a single
realization of the radial vorticity fluctuations in the θ–z plane in inner coordinates
at y+ = 5, for Ta = 1000 and Ta =1500, respectively. The most visible effect of the
imposed pressure gradient is the progressive tilting in the axial direction z of the
elongated wall structures which are aligned with the θ axis at Re = 0. Simultaneously
there is an appreciable reduction in width of the coherent structures with Re, which
is consistent with the two-point correlations of the w′ velocity in the z direction.
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Figure 18. Velocity spatial correlation in z direction in inner coordinates at Ta = 1500: (a) z
component, (b) r component, (c) θ component; solid line, Re = 0; dotted line, Re = 50; dashed
line, Re = 100; long-dashed line Re =200.
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Figure 19. Velocity spatial correlation in θ direction in inner coordinates at Ta = 1000: (a) z
component, (b) r component, (c) θ component; solid line, Re = 0; dotted line, Re = 50.

Indeed owing to the presence of a moderate tilting, the correlation functions along
two orthogonal directions should be simultaneously analysed to characterize the
modification occurring to the wall structures.
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Figure 20. Velocity spatial correlation in θ direction in inner coordinates at Ta = 1500: (a) z
component, (b) r component, (c) θ component; solid line, Re = 0; dotted line, Re = 50; dashed
line, Re = 100; long-dashed line, Re = 200.
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Figure 21. Instantaneous shaded map of ω′
r
+ in the θ–z plane in inner coordinates at y+ = 5

(Ta = 1000): (a) Re = 0, (b) Re = 50.

5. Conclusions
The study has dealt with the flow phenomena occurring in a Taylor–Couette

arrangement, with a rotating inner cylinder and a fixed outer one, when a steady axial
pressure gradient of moderate intensity is imposed. The geometry is characterized by a
cylinder radii ratio equal to 0.98, for which extensive experimental data are available.
Flow features within the annulus have been investigated by numerical means, that is
through space and time integration of the unsteady Navier–Stokes equations, written
in cylindrical coordinates, in velocity and pressure formulation. Spatial discretization
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Figure 22. Instantaneous shaded map of ω′
r
+ in the θ–z plane in inner coordinates at

y+ = 5 (Ta = 1500): (a) Re = 0, (b) Re = 50, (c) Re = 100, (d ) Re = 200.

has been performed with a spectral Chebyshev algorithm for the inhomogeneous
(radial) direction and blended Fourier decomposition for the homogeneous (axial and
azimuthal) ones. Space and time discretization parameters are chosen in order to
resolve all scales of motion, so that neither temporal nor spatial filtering is required
(DNS). The results, obtained by processing a set of statistically independent data, have
been used to investigate the torque reduction occurring in a well-defined region of the
Taylor and Reynolds numbers envelope. This phenomenon, already experimentally
observed through a global parameter study, has been confirmed by the present work.
The analysis of the three-dimensional flow field has been carried out with the help
of the radial distributions of the first and second order moments of the velocity
fluctuations. The axial pressure gradient is seen to induce a progressive decrease and
flattening of the turbulent kinetic energy profiles. Likewise the turbulent shear stress
and turbulent dissipation also show a similar trend. The most important changes
of the large-scale coherent structures occurring in the torque-reducing regimes have
been described in terms of one-dimensional spectra of the velocity component in
wavenumber space. In the azimuthal direction, at low wavenumbers the pressure
gradient has been documented to induce some energy reduction for both the axial
and azimuthal fluctuating-velocity components, while at higher wavenumbers an
increase is observed. The radial component instead undergoes an increase at all
azimuthal wavenumbers. On the other hand, in the axial direction all distributions
are characterized by a uniform reduction at all wavenumbers when the axial pressure
gradient is imposed. Therefore it can be inferred that the torque reduction is associated
with a peculiar modification of the large-scale coherent structures, as the axial flow
rate is increased. The modification consists in a spectral energy gain (loss) at the small
(large) scales in the azimuthal direction, while in the axial direction energy is just
lost. Indeed turbulent structures are differently modified in the axial and azimuthal
directions as a consequence of the axial mean shear. The analysis of two-point velocity



Torque reduction in Taylor–Couette flows 397

Re = 0 Re = 50

�z Nz Cτ × 103 � % Cτ × 103 � %

4 64 2.381 −2.532 2.143 0.920
5 80 2.422 −0.844 2.094 −1.379
6 96 2.453 0.422 2.123 0
7 112 2.443 0 2.124 0.049
8 128 2.443 0 2.123 0

Table 4. Effects of the axial length of the computational domain; Nθ = 256, and
Nr =Np × Nsub = 14 × 4 = 56.

correlation functions shows that the axial pressure gradient induces an appreciable
reduction of the characteristic length scale of the coherent structures. The power
required to drive the overall flow is seen to considerably reduce compared to the
power necessary to drive the Taylor–Couette flow alone.

The authors are grateful to Professor Jim Wallace of the University of Maryland
for the useful discussions and for reading the manuscript.

Appendix. Box size and accuracy check
To ascertain the correctness of the axial length �z we have compared in table 4

a few simulations carried out with different lengths, viz. �z = 4, 5, 6, 7, 8, for the
(Ta, Re) = (1000, 0) and (Ta, Re) = (1000, 50) pairs, in terms of torque coefficient.
The achievements of the study are applicable to the Ta = 1500 cases, provided the
spatial resolution is sufficient to resolve the smallest scales which, as a consequence
of the Taylor number increase, have reduced in size. We shall return to this point
later on.

As already stated in § 3, the baseline configuration of the computational domain
consists of four subdomains, each with 64, 14 and 256 modes in the axial, radial
and azimuthal directions, respectively. A grid refinement study detailed later on will
demonstrate the grid size adequacy.

When the axial length was increased, the number of points in the z direction
was increased too, in order to maintain the same spatial resolution, while
the azimuthal and radial resolutions were kept unchanged (i.e. Nθ =256 and
Nr =Np × Nsub = 14 × 4 =56). The angular width β = �θ/r , fixed to 2π/9, will be
detailed later on. In both cases (Re = 0 and Re = 50) the torque coefficients showed
negligible variations, compared with the �z = 8 computations, assumed as reference
data, with a maximum percentage error of 2.53 and 1.38, respectively. In figure 23 the
two-point correlation coefficients in the axial direction for all velocity components, at
y = 0.11, are shown, for Ta = 1000: (a–c) Re = 0 and (d–f ) Re = 50.

While in the (Ta, Re) = (1000, 0) case some differences are visible, particularly
for the axial and azimuthal components, in the (Ta, Re) = (1000, 50) simulations all
correlations show a more than satisfactory collapse. In view of the considerable
overall number of points of the shortest domain (�z = 4, Ntot =0.92 × 106), and of
the negligible variations in the global data reported in table 4, this configuration has
been considered acceptable and retained for all simulations.

The above procedure has been applied to assess the azimuthal length of the
computational domain which has been varied by changing its angular width β in
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Re = 0 Re = 50

β Nθ Cτ × 103 � % Cτ × 103 � %

6 384 2.381 0 2.079 0
9 256 2.381 0 2.082 0.149

12 192 2.371 −0.433 2.082 0.149

Table 5. Effects of the azimuthal length of the computational domain; Nz = 64 and
Nr = Np × Nsub = 14 × 4 = 56.
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Figure 23. Velocity spatial correlations in the z direction at Ta = 1000: (a) z component,
Re = 0; (b) r component, Re = 0; (c) θ component, Re = 0 ; (d ) z component, Re = 50; (e) r
component, Re = 50; (f ) θ component, Re = 50; solid line, �z = 4; dotted lines, �z = 5; dashed
line, �z = 6; long-dashed line, �z = 7; dot-dashed line, �z = 8.

the range 2π/12–2π/6. Table 5, which is the counterpart of table 4, reports the
torque coefficients, together with the grid resolution and the percentage errors. Again,
the resolution in θ direction is kept constant while increasing the azimuthal length,
maintaining the axial and radial number of points unchanged (i.e. Nz = 64 and
Nr = Np × Nsub = 14 × 4 = 56). The length �z has been fixed to 4.

In figure 24(a–c) the two-point correlation coefficients in the azimuthal direction
for all velocity components, at y = 0.11, are given, for both (Ta, Re) = (1000, 0) and
(Ta, Re) = (1000, 50) pairs.

Both global and local data confirm the fact that a box size in the azimuthal
direction of 2π/9 is sufficient to accommodate the largest flow structures controlling
the flow dynamics.

A grid refinement study has been carried out separately, increasing the grid size
in the homogeneous directions z and θ for a given box dimension (i.e. �z = 4 and
β = 2π/9). For the sake of keeping down the computational cost, the number of
modes has been increased by a factor 1.5, yielding the results of table 6. Data show
no appreciable changes in the global statistical quantities of interest. (The largest
difference is less than 1.2 %.)

As a further proof of the appropriate spatial resolution, one-dimensional power
spectra of all velocity components in outer coordinates versus kθ and kz, at y =0.11,
are given in figure 25. The considerable increase in the number of points (of
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Nz Np × Nsub Nθ Ntot × 10−6 Cτ × 103

64 14 × 4 256 0.918 2.381
64 14 × 4 350 1.254 2.412
96 14 × 4 256 1.376 2.368

Table 6. Grid refinement study.
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Figure 24. Velocity spatial correlations in the azimuthal direction at Ta = 1000 (a) z
component, Re =0; (b) r component, Re = 0; (c) θ component, Re = 0; (d ) z component,
Re = 50; (e) r component, Re = 50; (f ) θ component Re = 50; solid line, β = 12; dotted line,
β = 9; dashed line, β = 6.
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Figure 25. Velocity power spectra at Ta = 1000. In θ direction: (a) Re = 0, (b) Re =50;
in z direction: (c) Re =0, (d ) Re = 50; solid line, (64 × 14 × 256) × 4; dotted line,
(96 × 14 × 256) × 4; long-dashed line, (64 × 14 × 350) × 4.

several hundred thousand points) does not produce appreciable differences at all
wavenumbers. Moreover, spectra are smooth for all grids, a consequence of the
appropriate sample size, and full, despite the absence of an inertial subrange. The
lack of any pile-up at the highest wavenumbers ensures that all scales of motion
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are correctly resolved, even on the coarse grid, so that the simulation can safely be
termed a DNS. Power spectra at Ta = 1500 are similar to those presented in figure 25
and thus have been omitted.
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